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THE NECESSARY AND SUFFICIENT CONDITIONS OF STABILITY IN THE LARGE' 

V.G. VERETENNIKOV and V.V. ZAITSEV 

Stability in the large on stationary sets is considered. A definition of stability 
which extends that of Kamenkov /l/ over a fairly wide class of sets is introduced. 

The derived necessary and sufficient conditions of stability are, unlike in /l-9,', 

constructively verifiable on a computer in the sense of probability and make possi- 

ble investigation of stability of systems of various physical properties. 

It is shown that the applied here algorithm converges with respect to probability to the 

solution of the problem. The necessary condition of stability, and of instability on some 
particular assumptions are obtained. They can be analytically verified. A fairly comprehens- 
ive survey of publications on investiqations of stability in the large appeared in //2,10/. 

1. Consider the equations of perturbed motion of the form 

lib/at = f (x) (1.1) 

where z is an n-dimensional vector of space R*.and f(z) is a continuous vector function 
(f(.r)e C(R”)). We assume that f(z) is such that the solution of system (1.1) satisfies the fol- 

lowing conditions (F): 1) the solution exists and is unique for any initial condition Z" == 
IC &)E R”; 2) the solution is continuous with respect to initial conditions x0. The con- 
ditions of fulfillment of (F) appear,for instance, in /ll/. 

We shall use the following notation: 0 for the coordinate oriqrn of space R”, me+G for 

the n-dimensional volume of set G! (the Lebesgue measure in space R”is the product of n 

Lebesque measures in R’),Ew is the set of values of function W(z), dG- is the outer bound- 

ary of set G, and 

Below, space will be understood to mean a set homeomorphic to a sphere. 

We introduce the class of sets Kwhose every element has the following properties: (VGE 
K) G is closed and bounded, mes,,G>O, BEG, 8G- is a surface, set G contains a point for 

which the homothetic transformation with center at that point in some neighborhood of dG- 
converts set dG- into nonintersecting surfaces. 

The last condition is satisfied in the case of a convex set G. 
We assume without loss of generality that the point under consideration coincides with 

8, since the latter can always be brought to that point. 

We shall call the set inti (8G-) bounded by the outer boundary of set GE K the largest 

connected set whose external boundary is i3G-, We denote by int (dG-) m= int, (3G-)\3G-. The larqe- 

st set H is understood to be that which comprises any set posessinq the required properties. 

The largest connected set exists by virtue of GE K. 

2. Let us formulate the definition of stability (in the large) on set GE K , with 

measure mess" G not necessarily small. 

Definition 1. System (1.1) is stable on set G in the meaning of this definition, if 

(Vr (to))z(tU)EG --=5 (Vt 2 to)r (t, t0, r(Q) E ink (30 (2.1) 

where G is a given fixed set. G.V. Kamenkov /l/ formulated this definition as well as the 

stability in the small inafinite time interval. 
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Definition 2. system (1.1) is stable in the meaning of this definition, when there 

exists a G for which system (1.1) is stable in the meaning of definition 1. Here, set G is 

not specified, but is selected from class K. 

Lemma 1. There exists for set GE K a function PV(I)E C that in some neighborhood 6 

of set &- satisfies the following conditions: 

1) (Vs E 6) w (z) > 0; (2.2) 

2) function w(x) is single-valued; 

3) (XL = const) II M'(Icca, < L; 

4) (Vc,, c* E &){X 1 iv(I) = c, A w (4 = $1 c 6 
lint, {z 1 W (z) < cl) c int, (5 I W (4 < 4 12 
int, (z 1 W (5) < cl) 0 (x 1 W(z) = cJ = 01 + (CL < C2); 

5) (Vy E aG-)(VZE: aG-) W (y) = W (z) 2 c,; 

6) (Vc E Ew)(3R > 0)(x 1 W(x) = c) c int,S,(; 
7) (Vc E Ew) and the set (5 1 W(z) = c)C* 
int, (z 1 w (5) .< C) is connected; 

8) (Vc E EN,) mesRn ((5 I W (x) = c)) = 0. 
When the boundary of aG- is specified in the form g(z)=O, where g(z)E c", then 1v (s) E 

cp. 

Proof. Consider the homothety transformation with the coefficient k(O< k :; 1. Surface 

aG- then becomes some Surface aGh--. We select a half-line issuing from 0 which intersects H? 

at point I = (z,,.. ., I~) and surface a&- at point .z6 = (s,~,.. ., z,L*) tack- = (z I gk (I) = 0)). 

We juxtapose to each surface dG&- number !iq.';/: , defining by the same token some func- 

tion IV (I). This definition implies that w(z)= C and possesses properties cl)-- (8) defined 

in (2.2). 
Let aG- = (z 1 g(z) :- U) and g (2) E Cp. 

By definition WZk-= (+I W(I)== /I.z//%:'). The selected half-line can be made to coincide 

with the positive direction of the coordinate axis X1 without loss of generality. Then g(z) = 

W(z) - (.+k", where XI is the coordinated of point z on the X1 axis. Since the property ab-c 

C!' is not affected by homothety, hence W(I) ECJ' in the neighborhood of 0. 

Remarks. 1) The proof of lemma implies that function W!z) may be defined by its level 

surfaces and an arbitrary function determined on some curve that intersects each level sur- 

face at one point only and has the properties (2.2) and is strictly monotonic - I"-_3", 8" 

2) If GEK and Gis convex, there exists a function determinate not only for fi(aG-) 
but, also,on the whole R”. This function can be defined so that w(e) = 0. From this fol- 

lows the relation between the introduced functions and Liapunov functions. 

We denote by ee+ (c?G-) the ~-neighborhood of dG- points outside int (aG-), i.e. 6,' (aG-)g 

(3: 1 x E int (aG-)A p (5, aG-) < ~1, and s,-(dG-) is the neighborhood of points inside int (aG-), 
which is similarly defined. 

Theorem 1. 1) For system (1.1) to be stable on set GE K in the meaning of Defini- 
tion 1 it is necessary and sufficient that there exists function V(s)=C that satisfies 
conditions (2.2) on 6 and 

(Vx (to) E aG-) (Vt > td J,. (x (t. t,, ~0)) < co (2.3) 

2) If the boundary of aG- can defined in the form g(.z) = 0, where g(s) EC', then 

v (5) E C' , and the necessary stability condition in the meaning of Definition 1 is 

(Yis E aG-) dl. (z)/dt < 0 (2.4) 

3) For stability on Gin the meaning of Definition 1 it is sufficient that in some neigh- 

borhood of aG- function V(I) satisfies one of the following conditions: 

(Vs E S,' (aG-)) dV (s)/dt < 0 (2.5) 
(Vs E a,- (aG-)) dV (s)/dt < O 

Proof. Lemma 1 implies the existence of function V(z) that satisfies conditions (2.2) 
and such that 

G = {z I V (4 <CO}, aG- = (5 1 v (x) = co) 

In this case (2.3) is the necessary and sufficient condition of stability in the meaning 
of Definition 1. Let US prove statement 2) of the theorem. By virtue of Lemma 1 V(Z)E C’. 
If we now assume that (2.4) is not true, while the system (1) is stable in the meaning of 
Definition 1, then there must exist an .q,~ aG_ such that v' (Q)> 0. By virtue of continuity 
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of v' that condition is satisfied in some neighborhood of x0. fience the tra]ect<>rlcs that 
begin at points of aG- where ir (z)> 0 leave the set int,(BG-). Since this is impossible, 
(2.4) is satisfied. The last statement of the theorem is obvious. 

Note that, when the equality in (2.4) is satisfied on a denumerable set, theI by virtue 

of the second condition (F)the system is stable in the meaning of Definition 1. 

Remarks. 3) Condition (2.4) is necessary and sufficient for /stability/ of linear 
systems and sets GEK bounded by one of second order surfaces. 

4) If system (1.1) is stable in the meaning of Definition 1 and condition (Vzz6,+ (LX-)\ 

d67 dV (z)/dt > 0 (or dV/dt >O, VZ E 6,- (X-) \ ~7) is satisfied, then aG consists of a limit 
points in 6,+(aG) (o-limit). A similar statement holds for some connected subset P of the 
boundary of aG_, if the integral curves of system (1.1) do not issue aE+ (P). 

5) For system (1.1) to be stable in the meaning of Definition 2 it is necessary and suf- 

ficient that there exists a GE K and function V(x) that satisfies Theorem 1 on G. 

Various sufficient conditions of stability in the large were obtained in /l-9/ using 
Liapunov functions. In investigations of stability in the large one is confronted, as a rule, 
with the question of existence of functions that can be used for such investigations. The 
formulated above necessary conditions of stability may be considered a transformation of the 

theorem of second Liapunov method for problems of stability in the large. Conditions (2.2) 
of Lemma 1 used in Theorem 1 define a class of functions used in stability investigations. 

Let GE K and G be convex, then using the Lebesgue theorem /12/ on differentiability of 

monotonic functions it is possible to show that function V(z) that satisfies (2.2) is dif- 

ferentiable almost everywhere (IDeSRn is the measure of set, where k" is indeterminate, is 

zero). 

Consider the qualitative pattemofunstable integral curve behavior. 

We say that the integral curve s(t,t,,s,) of system (1.1) passes over surface dG-, if 

(ZIt,, t,jto < h < t, < 00 (VT 6~ k, t&j x (t, to, x0) E 3G-. 
If, however, g(x)= G' and in the case of function vsatisfying conditions (2.2) the 

derivative V’(t(t,t,,so) is zero at point y E X-, we shall call point y the point of tang- 

ency of the integral curve with surface aG- . 
We say that the integral curve of system (1.1) emerges from set int,(aG-) at point 50 E 

l?G- when 

0t,, t*) t, d t, < t, < ca 20 = .Z (ti, t,, 20) /j (VT E! (tl, t,)) 

x (r, t,, 50) ZZ int, (BG-) 

We introduce the notation 

A,, 2 {ix 1 I E aG- f\ V’ (x) = 0) 

Q, E (5 I.2 E aG- /\ V’ (4 > 0) 

We separate qualitatively unstable integral curves in the following three types: 1) whose 

emergence point is a point of the set Q1; 2) that in which the integral curve issuing from 

int(aG-) and touching aG- departs from int,(aG-); and 3) in which the integral curve passes 

over the surface BG-and emerges from int,(aG-). 
In the case of unstable integral curves of the second type function V’ is positive in 

the neighborhood emergence point of set int (aG-) , on surface 8G- it is zero, and at emerg- 

ence from int, (aG-) it is again positive. in the case of unstable curves of the third type V 
is zero on aG- and at emergence from int,(aG-) it is positive. The points of emergence from 

int,(aG-) are classified in conformity with the classification of integral curves. 

In those cases in which in (1.1) fog' and the boundary is fairly smooth it is pos- 

sible to reduce the set of points Ao, which may be points of emergence, by introducing in 

the analysis the second derivative of function vby virtue of system (1.1) 

Theorem 2. The sufficient stability condition in the meaning of Definition 1 on set 

G E: K, aG- = (~1 g (r) = O), g (5) E C2 of system (1.1) with f(.z)~ Cl, is the existence of func- 

tion V (2) that satisfies (2.2) and the inequality 

(Vs E aG-) dV (x)/dt .< 0 /j dJV (s)ldP # 0 (2.6) 

Proof. When conditions (2.6) are satisfied unstable integral curves of the third tYPe 

are not possible. Suppose that unstable curves of the second type exist. Then 1:'onintegral 

curves issuing from int(dG-) is positive in a small neighborhood of the issue point, is zero 

on set aG-, and then again positive. However it follows from (2.6) that at respectivepoints 

li" > 0 v li" < 0 , and by virtue of the equality 
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(VT”) (Vt > to) V’ (I (t. to, 50)) - I/” (ICI) = { 1’” clt 
la 

the assumed behavior of V’ is impossible. The theorem is proved. 

Thus, when the assumptions of Theorem 2 are satisfied, the points of emergence from 

int,(&-) can belong either to set Qr or Q2% (z ) z E aG- /\ V’ (I) = V*‘(Z)= 0) (the necessary 

condition of instability). 
In the cases in which function V (z)is fairly smooth it is possible to solve the problem 

by introducing in the analysis by virtue of system (1.1) higher order derivatives of I'. 

Theorem 3. If (3l)f(z)~ CL r\g(z) E C'/\ (Vr), 2r + 1 < 1, the relations 

(Vz &G-) V’ (z) < 0 /^\ (Vz E B,) I;” (z) = 0 /\ (2.7) 

(Vz E B,) d3V (x)/dP < 0 /\ (Vz E B,) dJV (s)/dt’ = 0 

/\ . . . r\ (Vz E BZr_l) d2”lV (s)/dP1 < 0 

Bi~(tlX~R,_lAdi-lV(s)/dtl-l=O) (i=2,3,...,2r~-1) 

RI 2 c?G-, (Vz E &) dT (s)/dP # 0 

are satisfied for function V(Z)E C’ that fulfils (2.2), then system (1.1) is stable on G 

in the meaning of Definition 1. 
If besides the fulfillment of (2.7) the equality 

(Vt E B,,) d”‘V (z)/dF = 0 

is valid, then in the case of 

(Vs E &,+J d?‘+‘V (z)/dP+l > 0 

system (1.1) is unstable on G. If 

(Vz E E,,,,) d?‘-+‘V (z)/dt*‘+’ < 0 

system (1.1) is stable on G in the meaning of Definition 1. 
Proof of the theorem is similar to that of Theorems 1 and 2 using the method of mathe- 

matical induction. 

Thus, when f(z) and G are fairly smooth, the necessary condition of instability is the 

continuity of one of sets Qj which for even j is defined by the relations 

Qi g {z 1 x E aG- /j V’ (x) = V” (x) = . . . = d’V (s)/dt’ = 0) 

and for odd j by 

Q, 2 (z I LZ E IYG- ,A V’ (2) = v” (5) = . . . = d’-‘V (s)/dt’-l = 0 /\ djV (s)/dt’ > 0) 

3. Consider the problem of constructing a set on which system (1.1) is stable in the 
meaning of Definition 1. Let us, first, assume that the outer boundary structure is of the 

form g (2, 4, g (5, 4 E c:,,, s E Q c fi'. 
We assume the set of parameters nto be bounded and compact. We construct insomefinite 

domain D,(6 ED,)set G C D,, for which (&I, E a) c?G- = (5 1 g(s,a,) = 0) and system (1.1) is 
stable on G in the meaning of Definition 1 (a particular case of-stability on Do) in the mean- 
ing of Definition 2. Investigations in Sect.2 imply the existence of the class of functions 

v (x, a) E c:,n; u E 51 (f(dE cl), that satisfy (2.2) and enable the investigation of sets stab- 
ility bounded by aG_ = (z 1 g (2, a) = 0, a E a). 

Let furthermore the inequality 

(3~ E 52) (3G (ao) c Do) (Vs E aG- (a,)) V’ (2, 4 < 0 (3.1) 

be satisfied. 

Then by virtue of continuity of V’(x,a) there exist neighborhoods of a, and +(aG-) 
where condition (3.1) is satisfied. 

The algorithm of solution of the stability problem in the meaning of Definition 1 on a 
selected set is given below. The problem of selecting Gis solved by computer by known numer- 
ical methods, for example, variation over a fairly small grid covering 9, random search on 
set B,random search with adaptation, etc. The number of iterations of the algorithm essential- 
1~ depends on the ratio of measure (me@ of the set of parameters a where (3.1) is satisfied, 



to the common measure of Q, and the quantity me~~,~ (6 (r)G-))/nle~,J1,. 

We Present the algorithm of stability analysis in the meaning of Definit1i.r: ,:, ., 

selected Set GE K. We assume that go C2 and f(x)E (‘1” In this case there exists f.~lr~r-- 
tion V(Z)E: c2 that can be used for stability investigation. We assume that conditlsn i2.41 
is satisfied on set 3G- and that set A, is continuous. Otherwise investigation of stablIlt;; 
in the meaning of Definition 1 is finished. Let US compute the quantity I'"on .I,, _ If set 

Q, is denumerable, system (1.1) is stable on Gin the meaning of Definition 1. If the in- 
tegral curves originating on Q, do not emerge from int, (aG_). then (1.1) is stable on G in the 

meaning of Definition 1. The last condition can be checked by random search on a computer 
using the following algorithm. 

Without imposing additional conditions on v' and 1." we assume that points Q? are equrv- 
alent as regardstheemergence from set int, (aG_). The test of validity of this hypothesis is 
given below. 

Let us select on set Q, a random point z0 with uniform probability density distribution 
over Q,. We integrate (l.l)over some time interval It,, 2'1 for 1 (to) = ~0 untiltheintegralcurve 

emerges either from Q, or from int,(aG-). In the latter case the unstable trajectory has been 
found, and the algorithm is completed. 

Definition 3. We call system (1.1) stable with a probability not lower than p on set 

GE K, if the existence at the initial instant of arbitrary point song implies that (Vt> 

to) x (t, t,, so) Eint, (8G-) with a probability not lower than p. 

This definition is close to that given in /13/. A probable stability does not violate 
the mechanical meaning attributed to the stability concept. Indeed, a projected real object 
has a determinate reliability, i.e. the probability of proper functioning of its subsystems, 

hence a definite probability of existence as an object with required properties. Consequent- 

ly, if the latter probability is lower than the probability of stability, then such system 

may be considered as satisfying practical requirements. 

Let us substantiate the validity of investigation of stability of systems (1.1). 

Lemma 2. If system (1.1) is unstable in the selected set GEK with a smooth boundary 

aG-, there exists a connected subset of emergence points such that m=Rn-1 Q > 0 (n > 1). 

Proof. By virtue of conditions (F) only the following cases are possible for each max- 

imal simply connected subset of emergence points v: 1) the-whole of aG- consists of emerg- 

ence points; 2) the boundary of set aQ consists of emergence points of the third type, and 

3) emergence points of the third type are absent in the neighborhood of boundary "(J . In 

the second case the set Q is closed, while in the third it is open. Hence y is measurable. 

Let us assume that a statement opposite to that of the lemma holds, i.e. that mesa,,_rQ=o. 

This implies the nonexistence of any arbitrary non-empty neighborhood of space RI'-' in set 0 

/lU. Consider the phase flux Q, issuing from Q. By virtue of the above assumption there 

exists in an arbitrarily small neighborhood of Q points lying between dc- and CD. Integral 

curves from the neighborhood of (1 c ?/G-l cannot pass through these points and,owing to the 

continuity of f (r) , neither the integral curves originating outside int, (dG-) can pass through 

those points. 
Thus in a fairly small ,neighborhood of Q there are points through which nointegral curves 

can pass, which is not possible in the case of dynamic systems (1.1) /ll/. Hence in@sRn_,(' > 0. 

Using the assumption of equivalence of points of Qz and applying the uniform probabili- 

ty density over Q2, after the i -th step of the algorithm one should expect that mes,,,_,Q/ 

mesa,,_, Q, = Iii /15/, 16/ (by virtue of Lemma 2 system (1.1) with mesR”-lQ1 = 0 is stable on 

G in the meaning of Definition 1). AS i-t m , either rnesRn_’ Q = 0, or an unstable integral 

curve is obtained. It follows from Lemma 2 that in the first case the system is stable. Thus 

the algorithm yields a solution of 

and the estimate of probability of 

the i -th step, equal l-l/i. 

1n the case of incompressible 

the problem that is convergent with respect to probability, 

stability in Gin the meaning of Definition 1 IS, after 

systems for which 

the above estimate of probability is improved. Indeed, in the theory of stability initial 

perturbations are assumed independent and equivalent, hence appearance of any perturbation 

s,, E int,(aG-) is equaly probable for m 00) * The appearance of an unstable integral curve 

can occur with a probability not greater than Ii?. 

The incompressibility condition is satisfied in the particular case of Hamiltonian 

systems on the basis of the Liouville theorem. Estimates of this kind are also valid for 

certain algorithms that uniformly select the random numbers s0 E int, (tic-). 
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In the more general case f(.r)~ C, g(r)E c' algorithms similar to those for ilo can be ap- 

plied. 

Examples. 1) Let f1=2 and dG- have the form of a square with sides equal a.. and 

symmetric relative to tl 

$G-= IJlkd 
I 

for I~l&lu I 
/ !, I A= a for IYl>l~l 

The selected region G is a particular case of regions widely used in investigations of 

stability in a finite time interval /2/. 
Stability in the meaning of Definition 1 in region G can only be judged in the case of 

continuous functions V (2). Continuously differential, and even more so, analytic functions 

\. 12) , which could be used for evaluating the stability of an arbitrary mechanical system in 

a selected set G, do not exist. 

Function V can be selected, for instance, in the form 

v (z,y) = 
( 

121 for l~l>lVl or I.= 
( 

&Xl -1 for Isl~lyl 
Iyl for Ivl>lzi em-1 for Iyl>lzl 

Note that, when everywhere, except on the bisectors of coordinate angles, condition (2.5) 

is satisfied, then (1.1) is stable in the meaning of Definition 1 by virtue of the second con- 

dition (0. Continuously differentiable functions that can be as close as desired to the 

considered here functions V do exist, but their derivation and assessment of correctness of 

their application require special conditions for yielding "wide" sufficient stability condi- 

tions. 

2) Let G = (z I zT oz < co), where (V r) z #fl z* a=>0 and 0,) = oj, (Vi. J = 2.L.. ., n). The neces- 

sary conditions of stability in the meaning of Definition 1 for system (1.1) are of the form 

If this condition is not satisfied, the system is clearly unstable in the selected set G. 

If the nonempty set 

42 = (t I fT (4 3t I * x (I*iY 
= 0) 

exists, the sufficient condition of stability in the meaning of Definition 1 for /(.z)E Cl is 

3) Consider the application of the proposed numerical methods on the example of stabili- 

zation in the field of central force of a material point circular motion controlled by the 

reaction force /17,18/. We write the equations of perturbed motion in the form 

I, = r - 70’ .z* = r’, lQ = r’acp‘ - (pot-J”‘. po = ‘2.11 

where r and 'p are polar coordinates of the point, T,, is the radius of the unperturbedcircular 
orbit, y is the universal gravitational constant , M is the mass of the center of attraction, 
cy and cp are projections of relative velocity of the separated particle on the directions 

of the radius and transverse direction, respectively, and mis the particle mass. 
Liapunov function and stabilizing control of the form 

where derived in /18/ using the arbitrary positive parameter u equal unity. 

Application of the proposed above algorithm of random search in the case of p=i, rO= 
iso, pLp= o. 1, b= 0.8,1= 4.1 showed that the region of attraction includes with a probability of 
8.10-5 the set (XIV(I)< 1.532). In the class of Liapunov functions v(z,A,~) with ?,E I4.241, PE 
[I, 101 and r,,= 10 parameters A and p were obtained with the probability of 3.iOL3, for which 
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the measure of the attraction region is maximum, namely, when Iz* = 8, II* = 5, the measure 
meSa,(" I V(z) < 0.0259) of the attraction region is equal 0.01774. In a narrower class of fun<:- 
tions !'(I, h. 2) and 1~ I4.241 the maximum attraction region is equal 0.562.10-5 with the probab- 
ility of 5,10ms with h* = 23. 

Note that in any set int, (zl V(z)= c) in the attraction region the system is stable in the 
meaning of Definition 1. 

Remarks. 6) If system is stable in the meaning of Definition 1 or 2, it is dissipative 

/19/. 
7) Note that the theorems considered here can be applied in investigations of stability 

in finite time intervals, for discontinuous systems subjected to continuous perturbations. 

They can be extended to the case of nonautonomous sets 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

G = G (t) (vr ,, to) c: (t) E K. 
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